dialogpt.py
# -*- coding: utf-8 -*-
"""DialoGPT.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1KAg6X8RFHE0KSvFSZ__w7KGZrSqT4cZ3
"""
# !pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# model_name = "microsoft/DialoGPT-large"
model_name = "microsoft/DialoGPT-medium"
# model_name = "microsoft/DialoGPT-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
print("====Greedy search chat====")
# chatting 5 times with greedy search
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
pad_token_id=tokenizer.eos_token_id,
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"DialoGPT: {output}")
print("====Beam search chat====")
# chatting 5 times with beam search
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
num_beams=3,
early_stopping=True,
pad_token_id=tokenizer.eos_token_id
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"DialoGPT: {output}")
print("====Sampling chat====")
# chatting 5 times with sampling
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
do_sample=True,
top_k=0,
pad_token_id=tokenizer.eos_token_id
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"DialoGPT: {output}")
print("====Sampling chat with tweaking temperature====")
# chatting 5 times with sampling & tweaking temperature
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
do_sample=True,
top_k=0,
temperature=0.75,
pad_token_id=tokenizer.eos_token_id
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"DialoGPT: {output}")
print("====Top-K sampling chat with tweaking temperature====")
# chatting 5 times with Top K sampling & tweaking temperature
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
do_sample=True,
top_k=100,
temperature=0.75,
pad_token_id=tokenizer.eos_token_id
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"DialoGPT: {output}")
print("====Nucleus sampling (top-p) chat with tweaking temperature====")
# chatting 5 times with nucleus sampling & tweaking temperature
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids = model.generate(
bot_input_ids,
max_length=1000,
do_sample=True,
top_p=0.95,
top_k=0,
temperature=0.75,
pad_token_id=tokenizer.eos_token_id
)
#print the output
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
print(f"DialoGPT: {output}")
print("====chatting 5 times with nucleus & top-k sampling & tweaking temperature & multiple sentences====")
# chatting 5 times with nucleus & top-k sampling & tweaking temperature & multiple
# sentences
for step in range(5):
# take user input
text = input(">> You:")
# encode the input and add end of string token
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors="pt")
# concatenate new user input with chat history (if there is)
bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids
# generate a bot response
chat_history_ids_list = model.generate(
bot_input_ids,
max_length=1000,
do_sample=True,
top_p=0.95,
top_k=50,
temperature=0.75,
num_return_sequences=5,
pad_token_id=tokenizer.eos_token_id
)
#print the outputs
for i in range(len(chat_history_ids_list)):
output = tokenizer.decode(chat_history_ids_list[i][bot_input_ids.shape[-1]:], skip_special_tokens=True)
print(f"DialoGPT {i}: {output}")
choice_index = int(input("Choose the response you want for the next input: "))
chat_history_ids = torch.unsqueeze(chat_history_ids_list[choice_index], dim=0)