Code for How to Predict Stock Prices in Python using TensorFlow 2 and Keras Tutorial

View on Github

import os
import time
from tensorflow.keras.layers import LSTM

# Window size or the sequence length
N_STEPS = 50
# Lookup step, 1 is the next day

# whether to scale feature columns & output price as well
SCALE = True
scale_str = f"sc-{int(SCALE)}"
# whether to shuffle the dataset
shuffle_str = f"sh-{int(SHUFFLE)}"
# whether to split the training/testing set by date
split_by_date_str = f"sbd-{int(SPLIT_BY_DATE)}"
# test ratio size, 0.2 is 20%
# features to use
FEATURE_COLUMNS = ["adjclose", "volume", "open", "high", "low"]
# date now
date_now = time.strftime("%Y-%m-%d")

### model parameters

# LSTM cell
# 256 LSTM neurons
UNITS = 256
# 40% dropout
# whether to use bidirectional RNNs

### training parameters

# mean absolute error loss
# LOSS = "mae"
# huber loss
LOSS = "huber_loss"
OPTIMIZER = "adam"
EPOCHS = 500

# Amazon stock market
ticker = "AMZN"
ticker_data_filename = os.path.join("data", f"{ticker}_{date_now}.csv")
# model name to save, making it as unique as possible based on parameters
model_name = f"{date_now}_{ticker}-{shuffle_str}-{scale_str}-{split_by_date_str}-\
    model_name += "-b"

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout, Bidirectional
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from yahoo_fin import stock_info as si
from collections import deque

import numpy as np
import pandas as pd
import random

# set seed, so we can get the same results after rerunning several times

def shuffle_in_unison(a, b):
    # shuffle two arrays in the same way
    state = np.random.get_state()

def load_data(ticker, n_steps=50, scale=True, shuffle=True, lookup_step=1, split_by_date=True,
                test_size=0.2, feature_columns=['adjclose', 'volume', 'open', 'high', 'low']):
    Loads data from Yahoo Finance source, as well as scaling, shuffling, normalizing and splitting.
        ticker (str/pd.DataFrame): the ticker you want to load, examples include AAPL, TESL, etc.
        n_steps (int): the historical sequence length (i.e window size) used to predict, default is 50
        scale (bool): whether to scale prices from 0 to 1, default is True
        shuffle (bool): whether to shuffle the dataset (both training & testing), default is True
        lookup_step (int): the future lookup step to predict, default is 1 (e.g next day)
        split_by_date (bool): whether we split the dataset into training/testing by date, setting it 
            to False will split datasets in a random way
        test_size (float): ratio for test data, default is 0.2 (20% testing data)
        feature_columns (list): the list of features to use to feed into the model, default is everything grabbed from yahoo_fin
    # see if ticker is already a loaded stock from yahoo finance
    if isinstance(ticker, str):
        # load it from yahoo_fin library
        df = si.get_data(ticker)
    elif isinstance(ticker, pd.DataFrame):
        # already loaded, use it directly
        df = ticker
        raise TypeError("ticker can be either a str or a `pd.DataFrame` instances")

    # this will contain all the elements we want to return from this function
    result = {}
    # we will also return the original dataframe itself
    result['df'] = df.copy()

    # make sure that the passed feature_columns exist in the dataframe
    for col in feature_columns:
        assert col in df.columns, f"'{col}' does not exist in the dataframe."

    # add date as a column
    if "date" not in df.columns:
        df["date"] = df.index

    if scale:
        column_scaler = {}
        # scale the data (prices) from 0 to 1
        for column in feature_columns:
            scaler = preprocessing.MinMaxScaler()
            df[column] = scaler.fit_transform(np.expand_dims(df[column].values, axis=1))
            column_scaler[column] = scaler

        # add the MinMaxScaler instances to the result returned
        result["column_scaler"] = column_scaler

    # add the target column (label) by shifting by `lookup_step`
    df['future'] = df['adjclose'].shift(-lookup_step)

    # last `lookup_step` columns contains NaN in future column
    # get them before droping NaNs
    last_sequence = np.array(df[feature_columns].tail(lookup_step))
    # drop NaNs

    sequence_data = []
    sequences = deque(maxlen=n_steps)

    for entry, target in zip(df[feature_columns + ["date"]].values, df['future'].values):
        if len(sequences) == n_steps:
            sequence_data.append([np.array(sequences), target])

    # get the last sequence by appending the last `n_step` sequence with `lookup_step` sequence
    # for instance, if n_steps=50 and lookup_step=10, last_sequence should be of 60 (that is 50+10) length
    # this last_sequence will be used to predict future stock prices that are not available in the dataset
    last_sequence = list([s[:len(feature_columns)] for s in sequences]) + list(last_sequence)
    last_sequence = np.array(last_sequence).astype(np.float32)
    # add to result
    result['last_sequence'] = last_sequence
    # construct the X's and y's
    X, y = [], []
    for seq, target in sequence_data:

    # convert to numpy arrays
    X = np.array(X)
    y = np.array(y)

    if split_by_date:
        # split the dataset into training & testing sets by date (not randomly splitting)
        train_samples = int((1 - test_size) * len(X))
        result["X_train"] = X[:train_samples]
        result["y_train"] = y[:train_samples]
        result["X_test"]  = X[train_samples:]
        result["y_test"]  = y[train_samples:]
        if shuffle:
            # shuffle the datasets for training (if shuffle parameter is set)
            shuffle_in_unison(result["X_train"], result["y_train"])
            shuffle_in_unison(result["X_test"], result["y_test"])
        # split the dataset randomly
        result["X_train"], result["X_test"], result["y_train"], result["y_test"] = train_test_split(X, y, 
                                                                                test_size=test_size, shuffle=shuffle)

    # get the list of test set dates
    dates = result["X_test"][:, -1, -1]
    # retrieve test features from the original dataframe
    result["test_df"] = result["df"].loc[dates]
    # remove duplicated dates in the testing dataframe
    result["test_df"] = result["test_df"][~result["test_df"].index.duplicated(keep='first')]
    # remove dates from the training/testing sets & convert to float32
    result["X_train"] = result["X_train"][:, :, :len(feature_columns)].astype(np.float32)
    result["X_test"] = result["X_test"][:, :, :len(feature_columns)].astype(np.float32)

    return result

def create_model(sequence_length, n_features, units=256, cell=LSTM, n_layers=2, dropout=0.3,
                loss="mean_absolute_error", optimizer="rmsprop", bidirectional=False):
    model = Sequential()
    for i in range(n_layers):
        if i == 0:
            # first layer
            if bidirectional:
                model.add(Bidirectional(cell(units, return_sequences=True), batch_input_shape=(None, sequence_length, n_features)))
                model.add(cell(units, return_sequences=True, batch_input_shape=(None, sequence_length, n_features)))
        elif i == n_layers - 1:
            # last layer
            if bidirectional:
                model.add(Bidirectional(cell(units, return_sequences=False)))
                model.add(cell(units, return_sequences=False))
            # hidden layers
            if bidirectional:
                model.add(Bidirectional(cell(units, return_sequences=True)))
                model.add(cell(units, return_sequences=True))
        # add dropout after each layer
    model.add(Dense(1, activation="linear"))
    model.compile(loss=loss, metrics=["mean_absolute_error"], optimizer=optimizer)
    return model

from stock_prediction import create_model, load_data
from tensorflow.keras.layers import LSTM
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard
import os
import pandas as pd
from parameters import *

# create these folders if they does not exist
if not os.path.isdir("results"):

if not os.path.isdir("logs"):

if not os.path.isdir("data"):

# load the data
data = load_data(ticker, N_STEPS, scale=SCALE, split_by_date=SPLIT_BY_DATE, 
                shuffle=SHUFFLE, lookup_step=LOOKUP_STEP, test_size=TEST_SIZE, 

# save the dataframe

# construct the model
model = create_model(N_STEPS, len(FEATURE_COLUMNS), loss=LOSS, units=UNITS, cell=CELL, n_layers=N_LAYERS,
                    dropout=DROPOUT, optimizer=OPTIMIZER, bidirectional=BIDIRECTIONAL)

# some tensorflow callbacks
checkpointer = ModelCheckpoint(os.path.join("results", model_name + ".h5"), save_weights_only=True, save_best_only=True, verbose=1)
tensorboard = TensorBoard(log_dir=os.path.join("logs", model_name))
# train the model and save the weights whenever we see 
# a new optimal model using ModelCheckpoint
history =["X_train"], data["y_train"],
                    validation_data=(data["X_test"], data["y_test"]),
                    callbacks=[checkpointer, tensorboard],

import numpy as np

import matplotlib.pyplot as plt

from stock_prediction import create_model, load_data
from parameters import *

def plot_graph(test_df):
    This function plots true close price along with predicted close price
    with blue and red colors respectively
    plt.plot(test_df[f'true_adjclose_{LOOKUP_STEP}'], c='b')
    plt.plot(test_df[f'adjclose_{LOOKUP_STEP}'], c='r')
    plt.legend(["Actual Price", "Predicted Price"])

def get_final_df(model, data):
    This function takes the `model` and `data` dict to 
    construct a final dataframe that includes the features along 
    with true and predicted prices of the testing dataset
    # if predicted future price is higher than the current, 
    # then calculate the true future price minus the current price, to get the buy profit
    buy_profit  = lambda current, pred_future, true_future: true_future - current if pred_future > current else 0
    # if the predicted future price is lower than the current price,
    # then subtract the true future price from the current price
    sell_profit = lambda current, pred_future, true_future: current - true_future if pred_future < current else 0
    X_test = data["X_test"]
    y_test = data["y_test"]
    # perform prediction and get prices
    y_pred = model.predict(X_test)
    if SCALE:
        y_test = np.squeeze(data["column_scaler"]["adjclose"].inverse_transform(np.expand_dims(y_test, axis=0)))
        y_pred = np.squeeze(data["column_scaler"]["adjclose"].inverse_transform(y_pred))
    test_df = data["test_df"]
    # add predicted future prices to the dataframe
    test_df[f"adjclose_{LOOKUP_STEP}"] = y_pred
    # add true future prices to the dataframe
    test_df[f"true_adjclose_{LOOKUP_STEP}"] = y_test
    # sort the dataframe by date
    final_df = test_df
    # add the buy profit column
    final_df["buy_profit"] = list(map(buy_profit, 
                                    # since we don't have profit for last sequence, add 0's
    # add the sell profit column
    final_df["sell_profit"] = list(map(sell_profit, 
                                    # since we don't have profit for last sequence, add 0's
    return final_df

def predict(model, data):
    # retrieve the last sequence from data
    last_sequence = data["last_sequence"][-N_STEPS:]
    # expand dimension
    last_sequence = np.expand_dims(last_sequence, axis=0)
    # get the prediction (scaled from 0 to 1)
    prediction = model.predict(last_sequence)
    # get the price (by inverting the scaling)
    if SCALE:
        predicted_price = data["column_scaler"]["adjclose"].inverse_transform(prediction)[0][0]
        predicted_price = prediction[0][0]
    return predicted_price

# load the data
data = load_data(ticker, N_STEPS, scale=SCALE, split_by_date=SPLIT_BY_DATE, 
                shuffle=SHUFFLE, lookup_step=LOOKUP_STEP, test_size=TEST_SIZE, 

# construct the model
model = create_model(N_STEPS, len(FEATURE_COLUMNS), loss=LOSS, units=UNITS, cell=CELL, n_layers=N_LAYERS,
                    dropout=DROPOUT, optimizer=OPTIMIZER, bidirectional=BIDIRECTIONAL)

# load optimal model weights from results folder
model_path = os.path.join("results", model_name) + ".h5"

# evaluate the model
loss, mae = model.evaluate(data["X_test"], data["y_test"], verbose=0)
# calculate the mean absolute error (inverse scaling)
    mean_absolute_error = data["column_scaler"]["adjclose"].inverse_transform([[mae]])[0][0]
    mean_absolute_error = mae

# get the final dataframe for the testing set
final_df = get_final_df(model, data)
# predict the future price
future_price = predict(model, data)
# we calculate the accuracy by counting the number of positive profits
accuracy_score = (len(final_df[final_df['sell_profit'] > 0]) + len(final_df[final_df['buy_profit'] > 0])) / len(final_df)
# calculating total buy & sell profit
total_buy_profit  = final_df["buy_profit"].sum()
total_sell_profit = final_df["sell_profit"].sum()
# total profit by adding sell & buy together
total_profit = total_buy_profit + total_sell_profit
# dividing total profit by number of testing samples (number of trades)
profit_per_trade = total_profit / len(final_df)
# printing metrics
print(f"Future price after {LOOKUP_STEP} days is {future_price:.2f}$")
print(f"{LOSS} loss:", loss)
print("Mean Absolute Error:", mean_absolute_error)
print("Accuracy score:", accuracy_score)
print("Total buy profit:", total_buy_profit)
print("Total sell profit:", total_sell_profit)
print("Total profit:", total_profit)
print("Profit per trade:", profit_per_trade)
# plot true/pred prices graph
# save the final dataframe to csv-results folder
csv_results_folder = "csv-results"
if not os.path.isdir(csv_results_folder):
csv_filename = os.path.join(csv_results_folder, model_name + ".csv")

To run this:

pip3 install tensorflow sklearn matplotlib numpy pandas yahoo_fin

Edit for your needs and run This will start training using the parameters you specified, you can use tensorboard on logs folder to visualize your training process.

Once you trained your model, use to evaluate and test your model, good luck!