Code for How to Build a Text Generator using TensorFlow 2 and Keras in Python Tutorial


View on Github

train.py

import tensorflow as tf
import numpy as np
import os
import pickle
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, Dropout
from tensorflow.keras.callbacks import ModelCheckpoint
from string import punctuation

sequence_length = 100
BATCH_SIZE = 128
EPOCHS = 3
# dataset file path
FILE_PATH = "data/wonderland.txt"
# FILE_PATH = "data/python_code.py"
BASENAME = os.path.basename(FILE_PATH)

# commented because already downloaded
# import requests
# content = requests.get("http://www.gutenberg.org/cache/epub/11/pg11.txt").text
# open("data/wonderland.txt", "w", encoding="utf-8").write(content)

# read the data
text = open(FILE_PATH, encoding="utf-8").read()
# remove caps, comment this code if you want uppercase characters as well
text = text.lower()
# remove punctuation
text = text.translate(str.maketrans("", "", punctuation))
# print some stats
n_chars = len(text)
vocab = ''.join(sorted(set(text)))
print("unique_chars:", vocab)
n_unique_chars = len(vocab)
print("Number of characters:", n_chars)
print("Number of unique characters:", n_unique_chars)

# dictionary that converts characters to integers
char2int = {c: i for i, c in enumerate(vocab)}
# dictionary that converts integers to characters
int2char = {i: c for i, c in enumerate(vocab)}

# save these dictionaries for later generation
pickle.dump(char2int, open(f"{BASENAME}-char2int.pickle", "wb"))
pickle.dump(int2char, open(f"{BASENAME}-int2char.pickle", "wb"))

# convert all text into integers
encoded_text = np.array([char2int[c] for c in text])
# construct tf.data.Dataset object
char_dataset = tf.data.Dataset.from_tensor_slices(encoded_text)
# print first 5 characters
for char in char_dataset.take(8):
    print(char.numpy(), int2char[char.numpy()])

# build sequences by batching
sequences = char_dataset.batch(2*sequence_length + 1, drop_remainder=True)

# print sequences
for sequence in sequences.take(2):
    print(''.join([int2char[i] for i in sequence.numpy()]))

def split_sample(sample):
    # example :
    # sequence_length is 10
    # sample is "python is a great pro" (21 length)
    # ds will equal to ('python is ', 'a') encoded as integers
    ds = tf.data.Dataset.from_tensors((sample[:sequence_length], sample[sequence_length]))
    for i in range(1, (len(sample)-1) // 2):
        # first (input_, target) will be ('ython is a', ' ')
        # second (input_, target) will be ('thon is a ', 'g')
        # third (input_, target) will be ('hon is a g', 'r')
        # and so on
        input_ = sample[i: i+sequence_length]
        target = sample[i+sequence_length]
        # extend the dataset with these samples by concatenate() method
        other_ds = tf.data.Dataset.from_tensors((input_, target))
        ds = ds.concatenate(other_ds)
    return ds

# prepare inputs and targets
dataset = sequences.flat_map(split_sample)

def one_hot_samples(input_, target):
    # onehot encode the inputs and the targets
    # Example:
    # if character 'd' is encoded as 3 and n_unique_chars = 5
    # result should be the vector: [0, 0, 0, 1, 0], since 'd' is the 4th character
    return tf.one_hot(input_, n_unique_chars), tf.one_hot(target, n_unique_chars)


dataset = dataset.map(one_hot_samples)
# print first 2 samples
for element in dataset.take(2):
    print("Input:", ''.join([int2char[np.argmax(char_vector)] for char_vector in element[0].numpy()]))
    print("Target:", int2char[np.argmax(element[1].numpy())])
    print("Input shape:", element[0].shape)
    print("Target shape:", element[1].shape)
    print("="*50, "\n")

# repeat, shuffle and batch the dataset
ds = dataset.repeat().shuffle(1024).batch(BATCH_SIZE, drop_remainder=True)

# building the model
# model = Sequential([
#     LSTM(128, input_shape=(sequence_length, n_unique_chars)),
#     Dense(n_unique_chars, activation="softmax"),
# ])

# a better model (slower to train obviously)
model = Sequential([
    LSTM(256, input_shape=(sequence_length, n_unique_chars), return_sequences=True),
    Dropout(0.3),
    LSTM(256),
    Dense(n_unique_chars, activation="softmax"),
])

model.load_weights(f"results/{BASENAME}-{sequence_length}.h5")

model.summary()
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

if not os.path.isdir("results"):
    os.mkdir("results")

# checkpoint = ModelCheckpoint("results/{}-{loss:.2f}.h5".format(BASENAME), verbose=1)

# train the model
model.fit(ds, steps_per_epoch=(len(encoded_text) - sequence_length) // BATCH_SIZE, epochs=EPOCHS)
# save the model
model.save(f"results/{BASENAME}-{sequence_length}.h5")

generate.py

import numpy as np
import pickle
import tqdm
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, Dropout, Activation
import os

sequence_length = 100
# dataset file path
FILE_PATH = "data/wonderland.txt"
# FILE_PATH = "data/python_code.py"
BASENAME = os.path.basename(FILE_PATH)
# load vocab dictionaries
char2int = pickle.load(open(f"{BASENAME}-char2int.pickle", "rb"))
int2char = pickle.load(open(f"{BASENAME}-int2char.pickle", "rb"))

sequence_length = 100
vocab_size = len(char2int)

# building the model
model = Sequential([
    LSTM(256, input_shape=(sequence_length, vocab_size), return_sequences=True),
    Dropout(0.3),
    LSTM(256),
    Dense(vocab_size, activation="softmax"),
])

# load the optimal weights
model.load_weights(f"results/{BASENAME}-{sequence_length}.h5")
# specify the feed to first characters to generate
seed = "alice is pretty"
s = seed
n_chars = 400
# generate 400 characters
generated = ""
for i in tqdm.tqdm(range(n_chars), "Generating text"):
    # make the input sequence
    X = np.zeros((1, sequence_length, vocab_size))
    for t, char in enumerate(seed):
        X[0, (sequence_length - len(seed)) + t, char2int[char]] = 1
    # predict the next character
    predicted = model.predict(X, verbose=0)[0]
    # converting the vector to an integer
    next_index = np.argmax(predicted)
    # converting the integer to a character
    next_char = int2char[next_index]
    # add the character to results
    generated += next_char
    # shift seed and the predicted character
    seed = seed[1:] + next_char

print("Seed:", s)
print("Generated text:")
print(generated)


🕒 Black Friday Limited-Time Offer!
EBook Image

Black Friday Week Special! Get our eBook Bundle at 52% off. Limited time only!

$102.0 $49.0