recognizer.py
import speech_recognition as sr
import sys
# read filename from arguments
filename = sys.argv[1]
# initialize the recognizer
r = sr.Recognizer()
# open the file
with sr.AudioFile(filename) as source:
# listen for the data (load audio to memory)
audio_data = r.record(source)
# recognize (convert from speech to text)
text = r.recognize_google(audio_data)
print(text)
live_recognizer.py
import speech_recognition as sr
import sys
#read duration from the arguments
duration = int(sys.argv[1])
# initialize the recognizer
r = sr.Recognizer()
print("Please talk")
with sr.Microphone() as source:
# read the audio data from the default microphone
audio_data = r.record(source, duration=duration)
print("Recognizing...")
# convert speech to text
text = r.recognize_google(audio_data)
print(text)
long_audio_recognizer.py
# importing libraries
import speech_recognition as sr
import os
from pydub import AudioSegment
from pydub.silence import split_on_silence
# create a speech recognition object
r = sr.Recognizer()
# a function to recognize speech in the audio file
# so that we don't repeat ourselves in in other functions
def transcribe_audio(path):
# use the audio file as the audio source
with sr.AudioFile(path) as source:
audio_listened = r.record(source)
# try converting it to text
text = r.recognize_google(audio_listened)
return text
# a function that splits the audio file into chunks on silence
# and applies speech recognition
def get_large_audio_transcription_on_silence(path):
"""Splitting the large audio file into chunks
and apply speech recognition on each of these chunks"""
# open the audio file using pydub
sound = AudioSegment.from_file(path)
# split audio sound where silence is 500 miliseconds or more and get chunks
chunks = split_on_silence(sound,
# experiment with this value for your target audio file
min_silence_len = 500,
# adjust this per requirement
silence_thresh = sound.dBFS-14,
# keep the silence for 1 second, adjustable as well
keep_silence=500,
)
folder_name = "audio-chunks"
# create a directory to store the audio chunks
if not os.path.isdir(folder_name):
os.mkdir(folder_name)
whole_text = ""
# process each chunk
for i, audio_chunk in enumerate(chunks, start=1):
# export audio chunk and save it in
# the `folder_name` directory.
chunk_filename = os.path.join(folder_name, f"chunk{i}.wav")
audio_chunk.export(chunk_filename, format="wav")
# recognize the chunk
try:
text = transcribe_audio(chunk_filename)
except sr.UnknownValueError as e:
print("Error:", str(e))
else:
text = f"{text.capitalize()}. "
print(chunk_filename, ":", text)
whole_text += text
# return the text for all chunks detected
return whole_text
# a function that splits the audio file into fixed interval chunks
# and applies speech recognition
def get_large_audio_transcription_fixed_interval(path, minutes=5):
"""Splitting the large audio file into fixed interval chunks
and apply speech recognition on each of these chunks"""
# open the audio file using pydub
sound = AudioSegment.from_file(path)
# split the audio file into chunks
chunk_length_ms = int(1000 * 60 * minutes) # convert to milliseconds
chunks = [sound[i:i + chunk_length_ms] for i in range(0, len(sound), chunk_length_ms)]
folder_name = "audio-fixed-chunks"
# create a directory to store the audio chunks
if not os.path.isdir(folder_name):
os.mkdir(folder_name)
whole_text = ""
# process each chunk
for i, audio_chunk in enumerate(chunks, start=1):
# export audio chunk and save it in
# the `folder_name` directory.
chunk_filename = os.path.join(folder_name, f"chunk{i}.wav")
audio_chunk.export(chunk_filename, format="wav")
# recognize the chunk
try:
text = transcribe_audio(chunk_filename)
except sr.UnknownValueError as e:
print("Error:", str(e))
else:
text = f"{text.capitalize()}. "
print(chunk_filename, ":", text)
whole_text += text
# return the text for all chunks detected
return whole_text
if __name__ == '__main__':
import sys
# path = "30-4447-0004.wav"
# path = "7601-291468-0006.wav"
path = sys.argv[1]
print("\nFull text:", get_large_audio_transcription_on_silence(path))
print("="*50)
print("\nFull text:", get_large_audio_transcription_fixed_interval(path, minutes=1/6))