Step up your coding game with AI-powered Code Explainer. Get insights like never before!
Google Trends is a website created by Google that analyzes the popularity of search queries on Google Search across almost every region, language, and category.
In this tutorial, you will learn how to extract Google Trends data using Pytrends, an unofficial library in Python, to extract almost everything available on the Google Trends website.
Here is the table of content:
To get started, let's install the required dependencies:
$ pip install pytrends seaborn
We'll use Seaborn just for beautiful plots, nothing else:
from pytrends.request import TrendReq
import seaborn
# for styling
seaborn.set_style("darkgrid")
To begin with pytrends, you have to create a TrendReq
object:
# initialize a new Google Trends Request Object
pt = TrendReq(hl="en-US", tz=360)
The hl
parameter is the host language for accessing Google Trends, and tz
is the timezone offset.
There are other parameters such as retries
indicating the number of retrials if the request fails or using proxies by passing a list to proxies
parameter.
To get the relative number of searches of a list of keywords, we can use the interest_over_time()
method after building the payload:
# set the keyword & timeframe
pt.build_payload(["Python", "Java"], timeframe="all")
# get the interest over time
iot = pt.interest_over_time()
iot
Output:
Python Java isPartial
date
2004-01-01 8 92 False
2004-02-01 8 100 False
2004-03-01 7 96 False
2004-04-01 7 98 False
2004-05-01 8 85 False
... ... ... ...
2021-10-01 14 11 False
2021-11-01 14 11 False
2021-12-01 13 11 False
2022-01-01 13 10 False
2022-02-01 15 11 True
218 rows × 3 columns
The values range from 0 (few or no searches) to 100 (maximum possible searches).
The build_payload()
method accepts several parameters besides the keyword list:
cat
: You can specify the category ID; if a search query can mean more than one meaning, setting the category will remove the confusion. You can check this page for a list of category IDs or simply call pytrends.categories()
method to retrieve them.geo
: The two-letter country abbreviation to get searches of a specific country, such as US
, FR
, ES
, DZ
, etc. You can also get data for provinces by specifying additional abbreviations such as 'GB-ENG'
or 'US-AL'
.timeframe
: It is the time range of the data we want to extract, 'all'
means all the data that is available on Google since the beginning, you can pass specific datetimes, or the minus patterns such as 'today 6-m'
will return the latest six months data, 'today 3-d'
will return the latest three days, and so on. The default of this parameter is 'today 5-y'
meaning the last five years.Let's plot the relative search difference between Python and Java over time:
# plot it
iot.plot(figsize=(10, 6))
Output:
Alternatively, we can use the get_historical_interest()
method which grabs hourly data. However, that's not useful if you're seeking long-term trends. It's suitable for short periods:
# get hourly historical interest
data = pt.get_historical_interest(
["data science"],
year_start=2022, month_start=1, day_start=1, hour_start=0,
year_end=2022, month_end=2, day_end=10, hour_end=23,
)
data
We set the starting and ending date and time and retrieve the results. You can also pass cat
and geo
as mentioned earlier. Here is the output:
data science isPartial
date
2022-01-01 00:00:00 28 False
2022-01-01 01:00:00 34 False
2022-01-01 02:00:00 42 False
2022-01-01 03:00:00 44 False
2022-01-01 04:00:00 52 False
... ... ...
2022-02-10 19:00:00 69 False
2022-02-10 20:00:00 70 False
2022-02-10 21:00:00 69 False
2022-02-10 22:00:00 73 False
2022-02-10 23:00:00 68 False
989 rows × 2 columns
If there's something quickly emerging, this method will definitely be helpful. Note that this method can cause Google to block your IP, as it grabs a lot of data if you specify an extended timeframe, so keep that in mind.
Let's get the interest of a specific keyword by region:
# the keyword to extract data
kw = "python"
pt.build_payload([kw], timeframe="all")
# get the interest by country
ibr = pt.interest_by_region("COUNTRY", inc_low_vol=True, inc_geo_code=True)
We pass "COUNTRY"
to the interest_by_region()
method to get the interest by country. Other possible values are 'CITY'
for city-level data, 'DMA'
for Metro-level data, and 'REGION'
for region-level data.
We set inc_low_vol
to True
so we include the low search volume countries, we also set inc_geo_code
to True
to include the geocode of each country.
Let's sort the countries by interest in Python:
# sort the countries by interest
ibr[kw].sort_values(ascending=False)
Output:
geoName
British Indian Ocean Territory 100
St. Helena 38
China 25
South Korea 25
Singapore 22
...
Pitcairn Islands 0
Guinea-Bissau 0
São Tomé & Príncipe 0
British Virgin Islands 0
Svalbard & Jan Mayen 0
Name: python, Length: 250, dtype: int64
You can also plot the top 10 if you wish, using ibr[kw].sort_values(ascending=False)[:10].plot.bar()
.
Another cool feature is to extract related topics of your keyword:
# get related topics of the keyword
rt = pt.related_topics()
rt[kw]["top"]
The related_topics()
method returns a Python dictionary of each keyword; this dictionary has two dataframes, one for rising
topics and one for overall top
topics. Below is the output:
value formattedValue hasData link topic_mid topic_title topic_type
0 100 100 True /trends/explore?q=/m/05z1_&date=all /m/05z1_ Python Programming language
1 7 7 True /trends/explore?q=/m/01dlmc&date=all /m/01dlmc List Abstract data type
2 6 6 True /trends/explore?q=/m/06x16&date=all /m/06x16 String Computer science
3 6 6 True /trends/explore?q=/m/020s1&date=all /m/020s1 Computer file Topic
4 5 5 True /trends/explore?q=/m/0cv6_m&date=all /m/0cv6_m Pythons Snake
5 3 3 True /trends/explore?q=/m/0nk18&date=all /m/0nk18 Associative array Topic
6 3 3 True /trends/explore?q=/m/026sq&date=all /m/026sq Data Topic
...
20 2 2 True /trends/explore?q=/m/021plb&date=all /m/021plb NumPy Software
21 2 2 True /trends/explore?q=/m/016r48&date=all /m/016r48 Object Computer science
22 2 2 True /trends/explore?q=/m/0fpzzp&date=all /m/0fpzzp Linux Operating system
23 1 1 True /trends/explore?q=/m/0b750&date=all /m/0b750 Subroutine Topic
24 1 1 True /trends/explore?q=/m/02640pc&date=all /m/02640pc Import Topic
Or related search queries:
# get related queries to previous keyword
rq = pt.related_queries()
rq[kw]["top"]
Output:
query value
0 python for 100
1 python list 97
2 python file 74
3 python string 73
4 monty python 44
5 install python 42
6 python if 41
7 python function 39
8 python download 34
9 python windows 33
10 python array 31
11 dictionary python 30
12 ball python 30
13 pandas 29
14 pandas python 29
15 python tutorial 26
16 python script 24
17 python class 23
18 python import 23
19 numpy 22
20 python set 22
21 python programming 21
22 python online 20
23 python time 19
24 python pdf 19
Also, there is the suggestions(keyword)
method that returns the suggested search queries:
# get suggested searches
pt.suggestions("python")
Output:
[{'mid': '/m/05z1_', 'title': 'Python', 'type': 'Programming language'},
{'mid': '/m/05tb5', 'title': 'Python family', 'type': 'Snake'},
{'mid': '/m/0cv6_m', 'title': 'Pythons', 'type': 'Snake'},
{'mid': '/m/01ny0v', 'title': 'Ball python', 'type': 'Reptiles'},
{'mid': '/m/02_2hl', 'title': 'Python', 'type': 'Film'}]
Here is another example:
# another example of suggested searches
pt.suggestions("America")
Output:
[{'mid': '/m/09c7w0',
'title': 'United States',
'type': 'Country in North America'},
{'mid': '/m/01w6dw',
'title': 'American Express',
'type': 'Credit card service company'},
{'mid': '/m/06n3y', 'title': 'South America', 'type': 'Continent'},
{'mid': '/m/03lq2', 'title': 'Halloween', 'type': 'Celebration'},
{'mid': '/m/01yx7f',
'title': 'Bank of America',
'type': 'Financial services company'}]
One more feature on Google trends is the ability to extract the current trending searches on each region:
# trending searches per region
ts = pt.trending_searches(pn="united_kingdom")
ts[:5]
Output:
0 Championship
1 Super Bowl
2 Sheffield United
3 Kodak Black
4 Atletico Madrid
Another alternative is realtime_trending_searches()
:
# real-time trending searches
pt.realtime_trending_searches()
Output:
title entityNames
0 Jared Cannonier, Derek Brunson, Mixed martial ... [Jared Cannonier, Derek Brunson, Mixed martial...
1 Christian Nodal, Belinda [Christian Nodal, Belinda]
2 Vladimir Putin, Russia [Vladimir Putin, Russia]
3 River Radamus, Slalom skiing, Giant slalom, Wi... [River Radamus, Slalom skiing, Giant slalom, W...
4 California State University, Fullerton, Cal St... [California State University, Fullerton, Cal S...
... ... ...
81 Javier Bardem, Minority group, Desi Arnaz, Aar... [Javier Bardem, Minority group, Desi Arnaz, Aa...
82 Marvel Cinematic Universe, Thanos, Avengers: E... [Marvel Cinematic Universe, Thanos, Avengers: ...
83 Siena Saints, College basketball, Rider Broncs... [Siena Saints, College basketball, Rider Bronc...
84 Chicago Blackhawks, St. Louis Blues, National ... [Chicago Blackhawks, St. Louis Blues, National...
85 New York Islanders, Calgary Flames, National H... [New York Islanders, Calgary Flames, National ...
86 rows × 2 columns
Alright, you now know how to conveniently extract Google Trends data using Python and with the help of the pytrends library. You can check the Pytrends Github repository for more detailed information on the methods we've used in this tutorial.
You can get the complete code here.
Learn also: How to Extract Wikipedia Data in Python
Happy extracting ♥
Finished reading? Keep the learning going with our AI-powered Code Explainer. Try it now!
View Full Code Understand My Code
Got a coding query or need some guidance before you comment? Check out this Python Code Assistant for expert advice and handy tips. It's like having a coding tutor right in your fingertips!