generate_images_from_text_stablediffusion.py
# %%
%pip install --quiet --upgrade diffusers transformers accelerate
# %%
# The xformers package is mandatory to be able to create several 768x768 images.
%pip install -q xformers==0.0.16rc425
# %% [markdown]
# # Using Dreamlike Photoreal
# %%
from diffusers import StableDiffusionPipeline
import torch
# %%
model_id = "dreamlike-art/dreamlike-photoreal-2.0"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
# %%
prompts = ["Cute Rabbit, Ultra HD, realistic, futuristic, sharp, octane render, photoshopped, photorealistic, soft, pastel, Aesthetic, Magical background",
"Anime style aesthetic landscape, 90's vintage style, digital art, ultra HD, 8k, photoshopped, sharp focus, surrealism, akira style, detailed line art",
"Beautiful, abstract art of a human mind, 3D, highly detailed, 8K, aesthetic"]
images = []
# %%
for i, prompt in enumerate(prompts):
image = pipe(prompt).images[0]
image.save(f'result_{i}.jpg')
images.append(image)
# %%
images[0]
# %%
images[1]
# %%
images[2]
# %% [markdown]
# # Manually working with the different components
# %%
import torch
from torch import autocast
import numpy as np
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL
from diffusers import LMSDiscreteScheduler
from diffusers import UNet2DConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from tqdm import tqdm
from PIL import Image
# %%
class ImageDiffusionModel:
def __init__(self, vae, tokenizer, text_encoder, unet,
scheduler_LMS, scheduler_DDIM):
self.vae = vae
self.tokenizer = tokenizer
self.text_encoder = text_encoder
self.unet = unet
self.scheduler_LMS = scheduler_LMS
self.scheduler_DDIM = scheduler_DDIM
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
def get_text_embeds(self, text):
# tokenize the text
text_input = self.tokenizer(text,
padding='max_length',
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors='pt')
# embed the text
with torch.no_grad():
text_embeds = self.text_encoder(text_input.input_ids.to(self.device))[0]
return text_embeds
def get_prompt_embeds(self, prompt):
# get conditional prompt embeddings
cond_embeds = self.get_text_embeds(prompt)
# get unconditional prompt embeddings
uncond_embeds = self.get_text_embeds([''] * len(prompt))
# concatenate the above 2 embeds
prompt_embeds = torch.cat([uncond_embeds, cond_embeds])
return prompt_embeds
def get_img_latents(self,
text_embeds,
height=512, width=512,
num_inference_steps=50,
guidance_scale=7.5,
img_latents=None):
# if no image latent is passed, start reverse diffusion with random noise
if img_latents is None:
img_latents = torch.randn((text_embeds.shape[0] // 2, self.unet.in_channels,\
height // 8, width // 8)).to(self.device)
# set the number of inference steps for the scheduler
self.scheduler_LMS.set_timesteps(num_inference_steps)
# scale the latent embeds
img_latents = img_latents * self.scheduler_LMS.sigmas[0]
# use autocast for automatic mixed precision (AMP) inference
with autocast('cuda'):
for i, t in tqdm(enumerate(self.scheduler_LMS.timesteps)):
# do a single forward pass for both the conditional and unconditional latents
latent_model_input = torch.cat([img_latents] * 2)
sigma = self.scheduler_LMS.sigmas[i]
latent_model_input = latent_model_input / ((sigma ** 2 + 1) ** 0.5)
# predict noise residuals
with torch.no_grad():
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeds)['sample']
# separate predictions for unconditional and conditional outputs
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
# perform guidance
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
# remove the noise from the current sample i.e. go from x_t to x_{t-1}
img_latents = self.scheduler_LMS.step(noise_pred, t, img_latents)['prev_sample']
return img_latents
def decode_img_latents(self, img_latents):
img_latents = img_latents / 0.18215
with torch.no_grad():
imgs = self.vae.decode(img_latents)["sample"]
# load image in the CPU
imgs = imgs.detach().cpu()
return imgs
def transform_imgs(self, imgs):
# transform images from the range [-1, 1] to [0, 1]
imgs = (imgs / 2 + 0.5).clamp(0, 1)
# permute the channels and convert to numpy arrays
imgs = imgs.permute(0, 2, 3, 1).numpy()
# scale images to the range [0, 255] and convert to int
imgs = (imgs * 255).round().astype('uint8')
# convert to PIL Image objects
imgs = [Image.fromarray(img) for img in imgs]
return imgs
def prompt_to_img(self,
prompts,
height=512, width=512,
num_inference_steps=50,
guidance_scale=7.5,
img_latents=None):
# convert prompt to a list
if isinstance(prompts, str):
prompts = [prompts]
# get prompt embeddings
text_embeds = self.get_prompt_embeds(prompts)
# get image embeddings
img_latents = self.get_img_latents(text_embeds,
height, width,
num_inference_steps,
guidance_scale,
img_latents)
# decode the image embeddings
imgs = self.decode_img_latents(img_latents)
# convert decoded image to suitable PIL Image format
imgs = self.transform_imgs(imgs)
return imgs
def encode_img_latents(self, imgs):
if not isinstance(imgs, list):
imgs = [imgs]
imgs = np.stack([np.array(img) for img in imgs], axis=0)
# scale images to the range [-1, 1]
imgs = 2 * ((imgs / 255.0) - 0.5)
imgs = torch.from_numpy(imgs).float().permute(0, 3, 1, 2)
# encode images
img_latents_dist = self.vae.encode(imgs.to(self.device))
# img_latents = img_latents_dist.sample()
img_latents = img_latents_dist["latent_dist"].mean.clone()
# scale images
img_latents *= 0.18215
return img_latents
def get_img_latents_similar(self,
img_latents,
text_embeds,
height=512, width=512,
num_inference_steps=50,
guidance_scale=7.5,
start_step=10):
# set the number of inference steps for the scheduler
self.scheduler_DDIM.set_timesteps(num_inference_steps)
if start_step > 0:
start_timestep = self.scheduler_DDIM.timesteps[start_step]
start_timesteps = start_timestep.repeat(img_latents.shape[0]).long()
noise = torch.randn_like(img_latents)
img_latents = scheduler_DDIM.add_noise(img_latents, noise, start_timesteps)
# use autocast for automatic mixed precision (AMP) inference
with autocast('cuda'):
for i, t in tqdm(enumerate(self.scheduler_DDIM.timesteps[start_step:])):
# do a single forward pass for both the conditional and unconditional latents
latent_model_input = torch.cat([img_latents] * 2)
# predict noise residuals
with torch.no_grad():
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeds)['sample']
# separate predictions for unconditional and conditional outputs
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
# perform guidance
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
# remove the noise from the current sample i.e. go from x_t to x_{t-1}
img_latents = self.scheduler_DDIM.step(noise_pred, t, img_latents)['prev_sample']
return img_latents
def similar_imgs(self,
img,
prompt,
height=512, width=512,
num_inference_steps=50,
guidance_scale=7.5,
start_step=10):
# get image latents
img_latents = self.encode_img_latents(img)
if isinstance(prompt, str):
prompt = [prompt]
text_embeds = self.get_prompt_embeds(prompt)
img_latents = self.get_img_latents_similar(img_latents=img_latents,
text_embeds=text_embeds,
height=height, width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
start_step=start_step)
imgs = self.decode_img_latents(img_latents)
imgs = self.transform_imgs(imgs)
# Clear the CUDA cache
torch.cuda.empty_cache()
return imgs
# %%
device = 'cuda'
# model_name = "dreamlike-art/dreamlike-photoreal-2.0"
model_name = "CompVis/stable-diffusion-v1-4"
# Load autoencoder
vae = AutoencoderKL.from_pretrained(model_name,
subfolder='vae').to(device)
# Load tokenizer and the text encoder
tokenizer = CLIPTokenizer.from_pretrained(model_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(model_name, subfolder="text_encoder").to(device)
# Load UNet model
unet = UNet2DConditionModel.from_pretrained(model_name, subfolder='unet').to(device)
# Load scheduler
scheduler_LMS = LMSDiscreteScheduler(beta_start=0.00085,
beta_end=0.012,
beta_schedule='scaled_linear',
num_train_timesteps=1000)
scheduler_DDIM = DDIMScheduler(beta_start=0.00085,
beta_end=0.012,
beta_schedule='scaled_linear',
num_train_timesteps=1000)
# %%
model = ImageDiffusionModel(vae, tokenizer, text_encoder, unet, scheduler_LMS, scheduler_DDIM)
prompts = ["A really giant cute pink barbie doll on the top of Burj Khalifa",
"A green, scary aesthetic dragon breathing fire near a group of heroic firefighters"]
imgs = model.prompt_to_img(prompts)
# %%
imgs[0]
# %%
imgs[1]
# %%
prompt = ["Aesthetic star wars spaceship with an aethethic background, Ultra HD, futuristic, sharp, octane render, neon"]
imgs = model.prompt_to_img(prompt)
imgs[0]
# %%
# saving the image
imgs[0].save("spaceship1.png")
# %%
# loading the image again
original_img = Image.open("spaceship1.png")
original_img
# %%
import torch
import gc
### If you get OOM errors, execute this cell
# del model
# Clear the CUDA cache
torch.cuda.empty_cache()
gc.collect()
torch.cuda.empty_cache()
# %%
!nvidia-smi
# %%
model = ImageDiffusionModel(vae, tokenizer, text_encoder, unet, scheduler_LMS, scheduler_DDIM)
prompt = "Aesthetic star wars spaceship with an aethethic background, Ultra HD, futuristic, sharp, octane render, neon"
imgs = model.similar_imgs(original_img, prompt, num_inference_steps=50, start_step=30)
imgs[0]
# %%
# model = ImageDiffusionModel(vae, tokenizer, text_encoder, unet, scheduler_LMS, scheduler_DDIM)
prompt = "Aesthetic dark star wars spaceship, Ultra HD, futuristic, sharp, octane render, neon"
imgs = model.similar_imgs(original_img, prompt,
num_inference_steps=50,
start_step=40)
imgs[0]